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The Theory of School Arithmetic: Fractions1 
 

Liping Ma and Cathy Kessel 
 

Introduction 
 
There are at least two different perspectives on arithmetic in elementary school, each 
embodied by a corpus of content knowledge. 
 
In one perspective, the main purpose of arithmetic is that students learn to compute the four 
basic operations with whole numbers and fractions, e.g., to give the answer 3 to the question 
1 + 2 = ? , or the answer  !

"
  to  !

#
	× !

$
	= ?.  The content knowledge that embodies this 

perspective includes only computational procedures. Apparently, what students learn by 
studying this body of content knowledge is very similar to what a calculator does.  When 
calculators became common, the necessity of having young students master this knowledge 
became doubtful.           
 
A second perspective is that students use arithmetic to acquire a sound foundation for their 
future—for everyday life when they grow up, as well as further study of mathematics.  The 
corresponding content knowledge has two main components.  One is proficiency in 
computing.  Gained by following conventional procedures as well as using shortcuts,2 it is 
considered not only as a skill needed in everyday life, but also the “substance” to foster and 
sharpen students’ understanding of numerical concepts such as those described in this 
article.  Also, proficiency in computing greatly eases mental load later when students 
approach sophisticated mathematical problems.   
 
The other component is the ability to solve word problems by using an “arithmetic equation” 
or a “quasi-equation.”3 Students learn how to formulate an arithmetic equation to display 
their approaches to solving a word problem, from one-step whole number problems through 
multi-step problems with fractions. This ability, consisting of skills and the habit of 
analyzing a quantitative relationship and representing it with a quasi-equation, prepares 
students to move on to their later learning of algebra, geometry, etc.  Also, the process of 
developing this ability serves as the “substance” to foster students’ logical and abstractive 

 
1 This article is a continuation of “The Theory of School Arithmetic: Whole Numbers” (Ma & Kessel, 2018) 
but can be read as an independent article.  
2 Following the conventional procedure is not always the “best” or the “fastest” way to compute. For example, 
to add 27 to 98, following the conventional procedure we first add 7 to 8 and get 15, carry one ten in 15 to 
tens place. Then at the tens place we add 2 to 9, and carrying the 1, get 12 tens. We carry the one hundred in 
12 tens to the hundreds place, and finally get the sum as 125.  Or, bypassing this conventional way, we just 
add 2 from 27 to 98 and get 100. Then add the remaining 25 to 100 and get 125.  This non-conventional way 
of computing is not an odd, wild, and inexplicable approach. Rather, it is justified by the theory of school 
arithmetic.   
3 The definition of “equation” in different dictionaries varies.  There are two characteristics of an equation that 
all may agree on: 1) it is horizontally presented; 2) it has three parts: two equivalent mathematical expressions 
connected by the equal sign, for example, x + 5 = 9. However, sometimes only two of these parts are used, for 
example, 54 + 21 =.  We call an expression followed by an equal sign a “quasi-equation.” It is the “stepping 
stone” for children’s use of equations in their future learning. 
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thinking. Word problems in school arithmetic are usually presented with situations related to 
everyday life. An important task of this type of presentation is to trigger students’ 
intellectual curiosity and to lead their minds beyond everyday life.4             
 
These two components are woven together by what we call “the theory of school 
arithmetic.” An important stage in this theory’s development occurred during the rise of 
universal education in the United States in the second half of the nineteenth century. During 
this rapidly spreading movement, mathematical scholars wrote textbooks for elementary 
school students. Within these textbooks, “arithmetic was increasingly formalized into a 
logical system” (Bidwell & Clason, 1970, p. 1).  This effort endowed “merchant 
arithmetic”—a collection of rules for computing commercial transactions—with the 
potential to foster logical thinking and reformed it as a school subject. However, within the 
United States this logical system was ignored during the Progressive era and abandoned 
during the New Math.5  
 
Outside the United States, it survived, and was improved and enriched in a few other 
countries, for example, East Asian countries where students perform well on international 
surveys such as TIMSS and PISA. Indeed, we believe that this logical system for school 
arithmetic is the root of what Ma called “Profound Understanding of Fundamental 
Mathematics.” 
 
In a previous article, “The theory of school arithmetic: Whole numbers” (Ma & Kessel, 
2018), we described the part of this logical system that concerns whole numbers and base-
ten notation for whole numbers.  In the present article, we discuss how this logical system is 
extended to include fractions.     
 
In our previous article we stated that the theory of school arithmetic has two important 
features: 
 

• a system of definitions and axioms modeled on the definitions, postulates, and 
common notions of Euclid’s Elements. These make relationships among operations 
explicit and afford explanations for algorithms and computations in terms of a 
small number of assumptions. This article focuses on the definitions rather than the 
axioms. (These axioms are compensation, and the commutative, associative, and 
distributive properties.)   

 
•  horizontal equations and expressions. Relationships among operations may be 

expressed symbolically by a series of equations, e.g., if 1 + 2 = 3, then 3 – 1 = 2. 
Unlike vertical columns, horizontal expressions allow students to solve 
sophisticated problems, showing a solution as a single arithmetical expression 
given in terms of the operations used to obtain it. These are illustrated by examples 
at the end of this article.  

 
4 There have been two main motivations for people to pursue mathematical knowledge, one is to solve problems 

in everyday life, the other is to satisfy intellectual curiosity.  Both are significant in terms of the development 
of the discipline.  In education, we should make sure that neither is ignored. 
5 For discussion of the abandonment of the system during the New Math, see Ma (2013). 
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The theory also has rules that are consequences of one or more definitions. For example, an 
instance of the rule of like numbers is that 2 apples and 3 oranges cannot be added.  
 
Logical features of the theory. As in the Elements, definitions are given in an order that is 
logical in the sense that if one definition depends on another, then it appears after that 
definition. For example, because the definition of addition depends on the definition of sum, 
the definition of addition is given after the definition of sum. Thus, these definitions are not 
are not circular as with dictionary definitions, but follow Pascal’s 1655 dictum “In 
definitions use only terms which are perfectly clear in themselves or which have been 
previously defined” (as quoted in Young, 1920, p. 190).  
 
A longstanding tradition in philosophy advocates simplicity in theoretical formulations of 
mathematics and science (Baker, 2016). Some examples are Ockham’s Razor (sometimes 
known as the Principle of Parsimony) and a statement attributed to Einstein “Everything 
should be made as simple as possible, but no simpler” (for further examples in a variety of 
fields and eras, see Baker, 2016). For mathematical theories, simplicity is often referred to 
as “parsimony” and often focuses on use of the fewest possible assumptions and on use of 
definitions that are general enough to include all cases under consideration. The theory 
presented in this article is parsimonious in at least two ways. 
 

• Rather than being given independently, the definitions of operations are given in 
terms of two basic quantitative relationships: sum and addends; product, multiplier, 
and multiplicand. For example, the definition of addition is given in terms of the 
relationship of sum and addends. 

 
• The two basic quantitative relationships for whole numbers and fractions are the 

same.  
 
Psychological features of the theory. In their collection of readings about mathematics 
education in the United States, Bidwell and Clason remark, “In the mid-nineteenth century 
school mathematics was still the science of quantity and geometry the science of space. 
Basing mathematics on quantity allowed mathematical and psychological theory to mesh; 
one initially learned mathematics from quantitative reality” (1970, p. 2). They note that in 
practice, this meant using manipulative objects such as cubes, beans, corn, and buttons in 
early number work.  
 
In the theory, this emphasis on quantity is reflected in the definition of a number as a 
collection of units6 and the notion of concrete numbers (e.g., 3 beans, 4 buttons, or 5 inches) 
as opposed to abstract numbers (e.g., 3, 4, 5). The distinction between concrete and abstract 
numbers is similar to the modern-day distinction between quantities with and without 
dimensions (see The International System of Units (SI), pp. 13–14). In the classroom, this 
distinction is sometimes described in terms of units: “5 inches” has units; “5” does not. 
 

 
6 This definition allows 1 to be a number, thus is a modification of the definition of number in Euclid’s 
Elements. 
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A feature of the theory that is different from a modern-day US viewpoint is the notion that 
abstract numbers mirror concrete numbers in having “number units” that act like units of 
measurement. A positive integer is a collection of ones and can be “measured” in terms of 
ones, tens, hundreds, etc. A positive rational number can be “measured” in terms of 
“fractional units” or “decimal fraction units.” Today, we can see the system of units for 
abstract numbers as mirroring the system of metric units for length (or for mass). For 
example, in the metric system there is a basic unit (meter) and “many as one” units (e.g., 10 
meters make 1 decameter) and “fractional units” (e.g., 1/10 meter is 1 decimeter). The 
corresponding number units are ones, tens, and tenths. 
 
In the theory, we have used “unit value” in stating rules for number units. Rules such as 
“Only like numbers (i.e., numbers with the same units) may be added” are introduced for 
concrete numbers, followed by their analogues for computation with abstract numbers, e.g., 
“Only digits with like unit value may be added.” Rules are introduced first for whole 
numbers (concrete and abstract), then for fractions. 
 
Organization of this article. The theory has two sections: one on whole numbers and one on 
fractions. This article focuses on the second section. We begin by summarizing the section 
on whole numbers, giving the definitions and rules from our article on whole numbers (for a 
more detailed discussion, see Ma & Kessel, 2018). The remainder of this article discusses 
the section of the theory that pertains to fractions. Although definitions and rules for whole 
remain the same for fractions, associated concepts expand. These and other pedagogical 
features are mentioned in pedagogical remarks that follow definitions and rules.  
 
Note that the theory described in this article underlies the type of school arithmetic in which 
students explore and represent relationships among the four operations. Although some 
nineteenth-century school textbooks presented definitions, rules, and axioms like those in 
this article, more recent elementary textbooks do not present them as formulated here. 
Moreover, some distinctions need not be made for students. For example, students need not 
make explicit distinctions between numbers and numerals or use terms such as “digits with 
like unit value.” Instead, they speak of “the digits of a number” rather than “the digits of a 
numeral” or “digits with the same units.” Such distinctions are needed in the theory to 
express connections between numbers and operations and the notation used to represent and 
compute them.  
 

I. General definitions: Whole numbers  
 
Units, numbers, abstract, concrete, and like numbers. A single thing, or a one, is called a 
unitor unit one. The name of the thing is the name of the unit. “One” is considered an 
unnamed unit. A group of things or a group of units, if considered as a single thing or one, is 
also called a unit. In this definition, we see two types of unit. The first type we call “one-as-
one unit” and the second “many-as-one unit.” 
 
A number is a unit or a collection of units.   

 
An abstract number is a number whose units are not named.  
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A concrete number is a collection of units with the same name.  

 
If two concrete numbers each have units with the same name, they are called like numbers. 
 
Although the concept is called “unit,” use of the terms “unit one” and “one” in teaching 
helps to connect “unit” with students’ conception of “one.” 
 
There is a subtle conceptual difference between viewing something as being a collection of 
units and being described in terms of units. This difference in views is analogous to two 
views of measurement. For example, when a book is described as “10 inches long,” one 
might envision a collection of 10 identical objects, each called “an inch,” laid end-to-end 
along the side of a book. Or, more abstractly, the 10 identical inches are represented on a 
ruler as identical lengths, but not identical objects, instead the first length is labeled 1, the 
second 2, and so on.   

 
II. Fractions  

(Introducing a new set of numbers, expanding the concept of number) 
 

Fractional unit. If one unit is partitioned in several equal parts, each of these equal parts is 
called a fractional unit. Any two of these equal parts are like fractional units. Thus, 1/3 and 
1/3 are like fractional units as are 1/3 apple and 1/3 apple. 

 

 
 

A fractional unit is an abstract concept. In children’s everyday life, except for “half” or 
“half of half” there are few opportunities for them to experience a concrete number that 
is a fractional unit. From fractional units, a new set of numbers is generated: fractions.  
 
A fractional unit, if considered as a single thing or one, is also called a unit or a unit one.  
A group of fractional units, if considered as a single thing or one, is also called a unit or 
a unit one. 
 
The theory of arithmetic begins with unit one. The concept of unit one increases in 
abstraction several times (see Table 1). The concept of many-as-one unit is one increase 
in abstraction. The concept of a single fractional unit is another increase in abstraction. 

Fig. 5.1 Fractional unit 

A fractional 
unit 

A fractional 
unit 

 

A fractional 
unit 
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Considering several fractional units as one unit is yet another increase in abstraction. 
Each of these types of unit has its own role in the theory. 

 
Table 1. The main types of units 

 
Type of unit Where unit is first used 
One as one Addition and subtraction of whole numbers 
Many integral units as one Multiplication and division of whole numbers 
Fractional unit as one Concept of fraction, addition and subtraction of fractions 
Many fractional units as one Multiplication and division of fractions 

 
Table 2. Unit values represented in notation systems 

 
Type of unit value Where used 
Nonnegative integer powers of ten Base-ten notation for whole numbers 
Negative integer powers of ten Base-ten notation for fractions 
Parts of one Numerator–denominator notation for fractions 

 
Whole numbers and fractional numbers. One unit or a collection of like integral units is 
called a whole number. A fractional number (or fraction) is a fractional unit or a collection 
of like fractional units.7 (For example, one seventh, three sevenths, and eight sevenths are all 
fractions.) 
 

It is only after the concept of fraction is introduced, that there is a need for the terms 
whole number and integral unit.  
 
In both cases, whole number and fractional number, a number is a collection of like 
units. Because fractional units are a new type of unit which (unlike many-as-one units) 
cannot be converted to integral units, this creates a new set of numbers.  
 
In this way, the concept of number is expanded.  
 
In human history, the natural numbers were the first type of numbers used. The first 
expansion was to fractions. Introducing a new type of numbers indicates use of the 
earlier numbers in a skillful way but also indicates awareness of their limitations. Use of 
a new type of number is significant in the discipline of mathematics.  
 
School arithmetic reflects this historical trajectory. For elementary students, after they 
master operations and the two basic quantitative relationships with whole numbers, the 
experience of learning operations with fractions affords the opportunity to understand 
why introducing a new type of number is interesting and necessary.  

 
Unit of a fraction and its value. A fraction is a collection of like fractional units. Any one 
of those units is the unit of the fraction. (For example, the unit of 3/5 is 1/5.) 

 
7 “By employing the term ‘fractional units,’ the same principles are made applicable to fractional numbers, for, 
all fractions are but collections of fractional units, these units having a known relation to 1” (Davies, 1857, p. 
iii). 
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The unit value of a fraction is equal to its fractional unit. (For example, the unit value of 
3/5 is 1/5 and the unit value of 4/7 is 1/7.)  
 
There is another term in mathematics, unit fraction. Although unit fraction and fractional 
unit have similar names and are written symbolically in the same way, the associated 
concepts are different. The concept of fractional unit emphasizes the concept of unit. It is 
a special type of unit from which fractional numbers are created. The term unit fraction 
emphasizes the concept of fraction. It is a type of fractional number. The concepts of 
fractional unit and unit fraction are not the same. In school arithmetic, the concept of 
fractional unit is very important, while the term unit fraction can be ignored.8 

 
Notation, numerator, and denominator. Any fractional unit is the result of the partition of 
a unit (1, 1 apple, 1 inch, etc.) into equal parts. The fractional unit is written 1/n (or 1/n 
apple, 1/n inch, etc.), where n is the number of parts in the partition. The number n is called 
the denominator of the fraction. 
 

The number of fractional units is indicated by the numerator of the fraction. One seventh 
is written 1/7, three sevenths is written 3/7. 
 
Within the whole numbers, the result of division is not always defined, for example, 
there is no whole number that could be the quotient of a given whole number divided by 
a larger whole number, e.g., 3 ÷ 5. Because of this, remainders occur in division of 
whole numbers when “number” means only “whole number.” As shown in this section, 
expanding the meaning of number to include fractions makes the result of division 
defined for any two whole numbers or any two fractions. (Note that zero is not one of 
the whole numbers under consideration.) 
 

Fractions with the same denominators. Fractions with the same denominators have 
fractional units of the same value.  

 
Fractions with the same denominator are very important when computing sums and 
differences of fractions.  
 
When learning fractions, students will work with different types of fractions such as 
proper fractions, improper fractions, mixed numbers, and complex fractions. These 
different forms are more important for computation. They are not necessary concepts of 
the theory, so will not be discussed in detail here.  

  

 
8 A unit fraction is a fraction with a 1 in its numerator. In ancient Egypt, every fraction was represented as a 
sum of unit fractions. For example: 

 
In modern mathematics, a unit fraction is also seen as the reciprocal of a whole number and plays an important 
role.  
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III. Addition and subtraction of natural numbers9 

 
The sum of two numbers. The sum of two numbers is a third number which contains as 
many units as the other two numbers taken together. 
 
Addition. The operation of finding the sum of two numbers is called addition.  
 
Addends. The two numbers summed are called addends.  
 
The rule of like numbers for addition. When two addends are concrete numbers, they 
must be like numbers. Their sum and the two addends are like numbers.  
 

This rule is a consequence of the definitions of number, sum, and addition. Because a 
concrete number is defined as a collection of units with the same name, collecting the 
units of two unlike concrete numbers or of a concrete number and an abstract number 
does not result in a number. 
 
Another consequence of this rule and conventions for notation is that a numeral can be 
written as the sum of numerals each of which represents the value of exactly one type of 
base-ten unit, e.g., 21 = 20 + 1. 

 
The rule of like unit value for addition. When computing a sum, only digits of like unit 
value can be added.  
 

This rule is the analogue for numerals of the rule of like numbers. 
 
Subtraction. If a sum and one addend are known, the operation of finding the unknown 
addend is called subtraction.  
 
Minuend, subtrahend, difference. The known sum in subtraction is called the minuend. 
The known addend is called the subtrahend. The unknown addend, which is the result of the 
operation of subtraction, is called the difference.  
 
The rule of like numbers and the rule of like units for addition applied to subtraction. 
When minuend and subtrahend are concrete numbers, they must be like numbers. (This is a 
consequence of the definitions of number and product.) Their difference, minuend, and 
subtrahend are also like numbers. When computing a difference, only digits of like unit 
value can be subtracted.  
 
  

 
9 Natural numbers do not include zero.  
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IV. Addition and subtraction of fractions 
(the definitions and axioms remain the same) 

 
The definitions of addition and subtraction of fractions are the same as those for whole 
numbers. 
 
These definitions are made in terms of the basic quantitative relationship “sum of two 
numbers”: The sum of two numbers is a third number which contains as many units as the 
other two numbers taken together. Here “number” includes whole numbers and fractions, 
and “unit” includes integral and fractional units. Note that defining a fraction to be a 
collection of fractional units rather than a collection of unit fractions allows the definitions 
of addition and subtraction to be the same for whole numbers and for fractions. 
 
The rule of like numbers for addition and subtraction of concrete fractions is the same 
as that for whole numbers.  
 
The rule of like unit value for addition and subtraction of abstract fractions. When 
adding and subtracting fractions, only fractions with the same unit value can be added and 
subtracted. In other words, when adding and subtracting fractions, only fractions with the 
same denominators can be added and subtracted. 

 
Fractions with unlike denominators must be converted to like denominators in order to be 
added or subtracted.  
 
When the concept of number is expanded to include fractions, the definition of addition and 
subtraction is the same as that for whole numbers. The axioms (i.e., compensation, and the 
commutative, associative, and distributive properties) and rules of computation (e.g., the 
rules of like numbers and like units) remain the same for addition and subtraction.  
 
Teaching students to calculate sums and differences of fractions is one of the hardest tasks in 
teaching. Its difficulty can be decreased if the rule of like numbers for addition and 
subtraction is emphasized when students learn operations with whole numbers. 
 
Converting fractions with unlike denominators to those with like denominators involves 
complicated computations with its own terminology. These terms (prime number, composite 
number, greatest common divisor, least common multiple) are not directly related to the 
theory, and will not be discussed here.  

 
The numbers in whole-number word problems are mostly concrete numbers with units that 
refer to physical objects (e.g., 3 apples), but those in word problems for addition and 
subtraction of fractions refer mostly to less tangible objects. For example:  
 

a. A group of students are doing a project together. They finished 1/7 of the project on 
the first day, 2/7 of the project on the second day. How much did they do on these 
two days? How much of the project is left to be done? 
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b. Bill and Cathy each borrow a copy of the same book. Bill read 2/5 of the book. 

Cathy read 3/8 of the book. Who read more? How much more?  
 
After fractions are introduced, the next stage of learning involves working mainly with 
quantitative relationships involving numbers with units that may be more abstract in two 
ways: the units refer to less tangible objects (e.g., portions of a project finished or a book 
read) and may be fractional units (e.g., 1/7) or many-as-one fractional units (2/7). 
 

 
V. Multiplication and division of natural numbers 

 
The product of two numbers. The product of two numbers is a third number which 
contains as many units as one number taken as many times as the units in the other. 
 
Multiplication. The operation of finding the product of two numbers is called 
multiplication.  
 

Multiplicand, multiplier, and factors. Multiplicand is the number to be taken. It is the first 
term in a multiplication expression. It is the term to the left of the multiplication sign. The 
multiplier is how many times the multiplicand is taken. It is the term to the right of the 
multiplication sign and is always an abstract number. When both multiplicand and multiplier 
are abstract numbers, they are also called factors.  
 
The distinction between multiplicand and multiplier does not remain throughout elementary 
mathematics. Initially, it is important because it helps students to be aware of the new many-
as-one unit (each copy of the multiplicand), helping them to expand their conception of unit.  
 
In a tape diagram, the many-as-one unit (i.e., the multiplicand) is depicted as a length. The 
multiplier indicates the number of those lengths in the diagram. Illustrating multiplication 
with a tape diagram rather than an array of dots distinguishes multiplier and multiplicand, 
and may help students to “unitize” the multiplicand, that is, see the multiplicand as a single 
unit rather than several ones.10  
 
Prior to multiplication, tape diagrams for addition and subtraction may be introduced in 
ways that show concrete numbers as lengths and suggest the connection between number as 
collection of objects and as a length. For example, Mathematics for Elementary School, a 
Japanese textbook series, shows a tape diagram for a second-grade addition problem in 
which each of two addends is shown as a line of dots within the tape. Similarly, for 
subtraction problem the subtrahend is shown as a line of dots within the tape (Hironaka et 
al., 2000/2006, pp. 13, 20).  

 
10 Viewing whole-number multiplicands as many-as-one units changes the question “When to introduce a 
fraction times a collection of objects?” to “When to introduce a fraction times a whole number?” or “When to 
introduce a fraction times a many-as-one unit?” For discussion of the first question with regard to the Common 
Core State Standards, see http://mathematicalmusings.org/2011/08/12/drafty-draft-of-fractions-
progression/#comment-1759. 
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The rule of like numbers for multiplication. When the multiplicand is a concrete number, 
the multiplicand and the multiplier are not like numbers. In that case, the product and the 
multiplicand are like numbers.  
 
In a tape diagram that shows a multiplicand that is a concrete number, the multiplicand and 
product are depicted as lengths. (An example for third grade occurs in Mathematics for 
Elementary School 3A, p. 71.) 
 
Division. If a product and one of the multiplicand or multiplier are known, the operation of 
finding the unknown multiplier or, respectively, multiplicand is called division. Division is 
also the operation of finding the unknown factor when the product and one factor are 
known.  

 
To find an unknown multiplicand is called partitive division. 
 
For a partitive division with a concrete-number dividend, a tape diagram shows the 
unknown multiplier as an unknown length. (An example for third grade occurs in 
Mathematics for Elementary School 3B, p. 13.) 

 
To find an unknown multiplier is quotitive division.  

 
For a quotitive division with a concrete-number dividend, a tape diagram shows the 
unknown multiplicand as an unknown number of lengths.  

 
To find an unknown factor is neither quotitive nor partitive division.  
 
Dividend, divisor, quotient, remainder. The known product in division is called the 
dividend. A known multiplicand, multiplier, or factor is called the divisor. The unknown, 
which is the result of the operation of division, is called the quotient.  
 
The dividend may be the sum of a number smaller than the divisor and a product where one 
factor is the divisor. The former is called the remainder. In this case, the result of division 
has two parts: quotient and remainder. Remainder is a temporary term in school arithmetic. 
After fractions are introduced, there is no longer a need for this term. 
 
The rule of like numbers for multiplication applied to division. In partitive division, 
dividend and quotient are like numbers. In quotitive division, dividend and divisor are like 
numbers.  
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VI. Multiplication and division of fractions 

(the definition of product is extended to fractions, axioms remain the same) 
 
The product when the multiplier is a whole number. The product of two numbers is a 
third number which contains as many units as one number being taken as many times as the 
units in the other. 
 
This definition is the same as that for whole numbers. 
 
The product when the multiplier is a fraction. The product of a fraction and another 
number is a third number formed by partitioning the multiplicand into as many equal parts 
as the denominator of the multiplier and taking as many of those parts as the numerator of 
the multiplier. 
 
Because a whole number can be considered as a fraction with denominator 1, this definition 
of product for a fractional multiplier reduces to the previous definition of product when this 
definition is used with a multiplier that is a whole number (identifying the whole number 
with a fraction with denominator 1). Thus, the same definition of product could be given 
whether the multiplier is a whole number or fraction.   
 

 
 
The definition of multiplication when the multiplier is a fraction. To multiply a 
fractional unit times a whole number or fraction, consider the multiplicand as a many-as-one 
unit, partition it into equal parts according to the denominator of the multiplier. The product 
is equal to any one of those parts.  
 

Multiplicand 

When the multiplier is a fraction, the product contains the fraction of units indicated by the 

multiplier. 
 

Multiplier 
3 
4 

Product  

Fig. 7.1 The definition of the product when the multiplier is a fraction 
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For example, to multiply ¼ times 5: Consider 5 as a many-as-one unit (as when 5 is the 
multiplicand in a product of two whole numbers). Partition it in 4 equal parts. Each part is 
equal to ¼ × 5.  
 
For example, to multiply ¼ times 3/5: Consider 3/5 as a many-as-one unit. Partition it in 4 
equal parts. Each part is equal to ¼ × 3/5. 
 
To multiply several fractional units times a whole number or fraction. Consider the 
multiplicand as a many-as-one unit, partition it into equal parts according to the denominator 
of the multiplier. Take one of those parts the number of times indicated by the numerator. 
 
For example, ¾ × 5 is 3 × (1/4 × 5), that is, ¼ × 5 taken 3 times. 
 
A number multiplied by a fraction is to find the fractional part. For example, to find ¾ of 12, 
multiply 12 by ¾.  
 
To find a fractional part of a number, use multiplication. 
 
When the multiplier is a whole number different from 1, the result of multiplication is larger 
than the multiplicand. When the multiplier is a fraction smaller than 1, the result of 
multiplication is smaller than the multiplicand.  
 
Whether the multiplicand is a whole number or a fraction does not change the definition of 
multiplication from its definition for whole numbers. For example, to find 12 times ¾ or 
“how many is twelve ¾?” in these problems the multiplicand is the fraction ¾ and the 
multiplier is the whole number 12. To be precise, the concept of multiplication expands only 
in the case when the multiplier is a fraction. For example, this occurs for: ¾ of 12 and “how 
many is ¾ of 8/5?” However, in teaching, we don’t need to be as precise.  
 
Historical notes. Here are examples of how multiplication by fractions has been described in 
textbooks. 
 

What is the product of 7/8 by 5/6?  
 
7/8 multiplied by one equals 7/8; hence 7/8 multiplied by 1/6 equals 1/6 of 7/8, which is 
7/48, and 5/6 times 7/8 equals 5 times 7/48, which are 35/48. (Brooks, Normal Higher 
Arithmetic, 1877, p. 98) 
 
In multiplying a given number by a fraction you take that fractional part of the given 
number. (Buckingham, 1953, p. 66) 
 
Finding such a part of a number as is indicated by a fraction is called multiplying the 
number by the fraction. (Sheldon, 1886, p. 54) 
 

Fraction and division. Division is the inverse of multiplication. As for whole numbers, it is 
to find an unknown multiplier or multiplicand. For example, we know that 6 ÷ 3 = 2 because 
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2 × 3 = 6. Now that numbers include fractions and multiplication has been defined for 
fractions, quotients of whole numbers exist. For example, because 1/3 × 3 = 1, we know that 
the quotient of 1 and 3 is 1/3. Thus, the fraction 1/3 can be written as 1 ÷ 3. 
 
Similarly, we can write 2 ÷ 3 as the fraction 2/3, 2 ÷ 5 as 2/5, and 5 ÷ 9 as 5/9.  
 
A division expression is a fraction. One part of a partition of a unit into equal parts can be 
written as a division expression in which 1 is the dividend and the divisor is the number of 
parts. One part of a partition of a unit into equal parts can be written as a fraction. In the 
fraction, the dividend is called the numerator; the divisor is called the denominator. The 
division sign corresponds to the fraction bar. 
 
Using only terms that students already know, we can also say whether or not the multiplier 
is a whole number or a fraction, the multiplicand (which can be a whole number or fraction) 
is considered as unit one. The multiplier decides whether the product is several of that unit 
or a fractional part of that unit.  
 

a. The distance between Bill’s house and school is 3 miles. The distance between 
Cathy’s home and school is 3 times that distance. How far is Cathy’s home from 
school? 
 

b. The distance between Bill’s house and school is 3 miles. The distance between 
Cathy’s home and school is 2/3 of that distance. How far is Cathy’s home from 
school? 

 
c. The distance between Bill’s house and school is 3/4 miles. The distance between 

Cathy’s home and school is 3 times that distance. How far is Cathy’s home from 
school? 

 
d. The distance between Bill’s house and school is 3/4 miles. The distance between 

Cathy’s home and school is 2/3 of that distance. How far is Cathy’s home from 
school? 

 
In the four problems above, the distance between Bill’s house and school is the 
multiplicand. The distance between Cathy’s house and school is the product to be found. 
Whether or not the multiplicand is a whole number or a fraction, it is considered as a unit. 
Whether the product is several times the unit or a fraction of the unit is decided by whether 
the multiplier is a whole number or a fraction.  
 
The definition of division with fractions derived from the definition of multiplication 
when the multiplier is a fraction. Division is the inverse operation of multiplication.  

 
Quotitive division.  
 

To find what part of the second number is of the first, divide the second by the first. 
(Wentworth & Smith, 1915, p. 94) 
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As with whole number division, division is the inverse operation of multiplication. When the 
product and multiplicand or multiplier are known, to find the unknown multiplier or 
multiplicand.  
 
Quotitive division is to find the multiplier. To find how many copies of a smaller number are 
contained in a given number or to find how many times larger than the smaller number the 
given number is. These examples illustrate conceptions of quotitive division in which the 
quotient is a whole number: How many twos are contained in 8? Eight is how many times 
larger than 2? Or many copies of 1/15 are contained in 1/3? One third is how many times 
larger than 1/15?  

 
To find what fractional part of a larger number a smaller number is. These examples 
illustrate conceptions of quotitive division in which the quotient is a fraction: What 
fractional part of 8 is 2? Or, 2 is what fraction of 8? One fifteenth is what fraction of 1/3?  
 
The two types of quotitive division are: A) multiplicand is smaller than or equal to  
multiplier; B) the quotient is a fraction less than 1. 
 
The difference between these two types of quotitive division depends on which is larger: 
dividend or divisor. Whether or not the known numbers are whole numbers or fractions 
doesn’t matter, however, this does not need to be made explicit to students.  
 
Partitive division.  
 

Given a part of a number, to find the number. (Wentworth & Smith, 1915, p. 95)  
 

Partitive division is to find the multiplicand, when the product and the multiplier are known.  
 
If the multiplier is a whole number this is to find the size of the many-as-one unit when the 
number of those units is known. (Partition 8 into four equal shares. How many in one share? 
Eight is four times a number, what is the number? Or, partition 9/17 into three equal shares. 
What size is a share?) 
 
If the multiplier is a fraction, this to find the whole (the many-as-one unit) when a fractional 
part of the whole is known. (If a quarter of a number is 2, what is that number? Or, if 3/5 of 
a number is 1/3, what is that number?)  
 
The difference between these two types of partitive division depends on which is larger: 
dividend or quotient. For the former, the quotient is smaller than the dividend. For the latter, 
the quotient is larger than the dividend.  
 
The two types of partitive division: A) quotient is larger than or equal to dividend; B) 
divisor is a fraction less than 1.  
 
Examples of problems about partitive division from a textbook: 
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If 2/3 of a number is 20, what is the number? (Sheldon, 1886, p. 60) 
 
A farmer sold 5/8 of his farm for $4795, how much was the whole farm worth at that 
rate? (Sheldon, 1886, p. 73) 

 
Partitive division of fractions contributed a new way of solving an old type of arithmetic 
problem. For example, there is a famous problem:  

 
The head of a fish weighs 1/3 of the whole fish, his tail weighs 1/4 and his 
body weighs 30 ounces. What does the whole fish weigh?  
(Sanford, 1927, p. 19)  

 
Formerly, this was solved by the “Rule of False Position.” If the weight of the whole fish is 
12 ounces, then the head is 4 ounces, the tail is 3 ounces, and the body is 5 ounces. 
Evidently (as Sanford puts it), the weight of the whole fish is the same multiple of 12 ounces 
that 30 ounces is of 5 ounces. As Sanford notes, “forethought in selecting the guessed 
answer makes it possible to avoid fractions, at least until the last step of the work.” Use of 
partitive division removes the need for this forethought. 
 
To use partitive division to solve the problem, consider the weight of the whole fish as the 
unit. The known weight, 30 ounces, is obtained from the whole fish by cutting off its head 
and tail. The problem doesn’t tell us what fraction of the whole the body is. However, we 
are told that the head is 1/3 and the tail is ¼. So the fractional part of the whole is: 

. Dividing the weight of the body by this fraction gives the weight of the fish in 
ounces: 
 

. 
 
Each term of the horizontal expression on the left-hand side of the equation corresponds to a 
quantity in the situation described in the problem. The solution method is described in a 
single expression. 
 
Ma (2013) mentions the following problem:  
 

Mrs. Chen made some tarts. She sold 3/5 of them in the morning and 1/4 of the 
remainder in the afternoon.  If she sold 200 more tarts in the morning than in the 
afternoon, how many tarts did she make? (Curriculum Planning & Development 
Division, 1999, p. 70) 

 
Like the fish problem, in this problem the whole (all the tarts) is unknown. We are told that 
a part of the whole is 200 tarts. The problem also tells us how to find what part of the whole 
the 200 tarts are. The 200 is the difference between the amount sold in the morning and the 
afternoon. The part sold in the morning is 3/5 of all the tarts. The part sold in the afternoon 
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is ¼ of the remainder which is . The 200 tarts is the difference between those 
sold in the morning minus those sold in the afternoon. Therefore, the total number of tarts is: 
 

. 
 

Compared with the fish problem, the tarts problem is more complicated because it involves 
multiplication of fractions.  
 
The famous problem of Diophantus’s tombstone is a problem of this type. With this 
approach, which is built on the definitions used in the theory of school arithmetic, students 
can even solve the problem of Diophantus’s tombstone. 
 
The rule of like numbers for multiplication and division of fractions is the same as that 
for whole numbers.  
 

Summary 
 

The theory has two sections. The first concerns whole numbers, and the second fractions. 
Important features of the first section are the definitions of number, unit, like number, sum, 
and product. In learning arithmetic with whole numbers, students’ initial conceptions of 
each are established. In learning multiplication with whole numbers, students’ conceptions 
of unit expand to include many-as-one unit. 
 
The second section of the theory concerns fractions. Students’ conceptions of unit expand 
again to include fractional unit. The underlying definition of number—a collection of like 
units—remains the same, but students’ conceptions of number expand to include fractions 
and their conceptions of unit expand to include many-as-one fractional unit. The underlying 
definition of sum (and addition and subtraction) remains the same. In multiplication with a 
fractional multiplier, students use the conception of many-as-one fractional unit.  
 
The notion of unit is used in measurement, in representing nonnegative integers and 
nonnegative rational numbers, in the definition of multiplication, and in solving word 
problems. This last use allows students the opportunity to formulate new units such as the 
weight of the fish in the fish problem and the total number of tarts in the tarts problem. 
 

Concluding remarks 
 

Instruction and instructional design. It is the role of instructional design and classroom 
instruction to help students learn the substance of the theory. This article has only briefly 
discussed how that might occur. (For more examples, see Ma, n. d., Ma & Kessel, 2018.) 
The role of the theory is to provide explicit definitions, explicit descriptions of relationships 
among concepts and explicit descriptions of how notation is used. In the pedagogical 
remarks, we have outlined how students’ conceptions are intended to change with 
instruction.  
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Cognition. The parsimony of the theory may afford a cognitive payoff. The definitions, 
rules, and axioms of the theory illustrate how arithmetic knowledge may be organized via a 
small number of concepts and principles—a feature of expert knowledge (National Research 
Council, 2000, p. 38).  
 
Coherence. Although the theory given in this article is in a form not meant for students, its 
definitions and rules are presented in an order that respects learning as well as logic. For 
example, the definition of unit is given before the definition of number because the latter 
depends on the former, but the definition of fractional unit is given after all definitions 
concerning whole numbers have been given although it could have been given earlier, 
because it depends only on the definition of unit. The order in which types of units are 
presented in the theory outlines how the concept of unit expands, increasing in abstraction 
from one thing as one unit, several units as one unit, a fraction of a unit as one unit, several 
fractional units as one unit. Introduction of the concept of many-as-one unit with whole 
numbers may help students to make the transition from the concept of number as cardinality 
to number as magnitude. The notion of unit can expand further, for instance, to include 
algebraic terms. 
 
A second way in which the theory respects learning is in the asymmetry of multiplier and 
multiplicand in the definition of product. From a mathematical point of view, treating 
multiplier and multiplicand as interchangeable might seem simpler. However, the definition 
of product given in this article adheres more closely in structure to situations involving 
products that include concrete numbers. After students become familiar with multiplication, 
they can begin to view products more abstractly. 
 
These are examples of how a theory can contribute to coherence in curricula and standards 
as described in the Common Core State Standards for Mathematics. The theory described in 
this article articulates: 
 

a sequence of topics . . . that are logical and reflect[s], where appropriate, the 
sequential or hierarchical nature of the disciplinary content from which the subject 
matter derives. (Schmidt & Houang, 2002 as quoted in National Governors 
Association Center for Best Practices, Council of Chief State School Officers) 
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